Simultaneous Perturbation Stochastic Approximation with Norm-Limited Update Vector
نویسندگان
چکیده
منابع مشابه
Simultaneous perturbation stochastic approximation of nonsmooth functions
A simultaneous perturbation stochastic approximation (SPSA) method has been developed in this paper, using the operators of perturbation with the Lipschitz density function. This model enables us to use the approximation of the objective function by twice differentiable functions and to present their gradients by volume integrals. The calculus of the stochastic gradient by means of this present...
متن کاملSimultaneous perturbation stochastic approximation for automatic speech recognition
While both the acoustic model and the language model in automatic speech recognition are typically well-trained on the target domain, the free parameters of the decoder itself are often set manually. In this paper, we investigate in how far a stochastic approximation algorithm can be employed to automatically determine the best parameters, especially if additional timeconstraints are given on u...
متن کاملMatrix Conditioning and Adaptive Simultaneous Perturbation Stochastic Approximation Method
This paper proposes a modification to the simultaneous per tu rba t ion stochastic approximation (SPSA) methods based on the comparisons made between the first o rder and the second order SPSA (1SPSA and 2SPSA) algori thms f rom the perspective of loss function Hessian. At finite iterations, the convergence rate depends on the matr ix conditioning of the loss function Hessian. It is shown that ...
متن کاملAdaptive stochastic approximation by the simultaneous perturbation method
Stochastic approximation (SA) has long been applied for problems of minimizing loss functions or root finding with noisy input information. As with all stochastic search algorithms, there are adjustable algorithm coefficients that must be specified, and that can have a profound effect on algorithm performance. It is known that choosing these coefficients according to an SA analog of the determi...
متن کاملOptimisation of particle filters using simultaneous perturbation stochastic approximation
This paper addresses the optimisation of particle filtering methods aka Sequential Monte Carlo (SMC) methods using stochastic approximation. First, the SMC algorithm is parameterised smoothly by a parameter. Second, optimisation of an average cost function is performed using Simultaneous Perturbation Stochastic Approximation (SPSA). Simulations demonstrate the efficiency of our algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Control
سال: 2015
ISSN: 1561-8625
DOI: 10.1002/asjc.1153